

Antimycobacterial Activity of 9-Sulfonylated/ Sulfenylated-6-mercaptopurine Derivatives

Andrea Scozzafava, a Antonio Mastrolorenzo and Claudiu T. Supurana,*

^aLaboratorio di Chimica Inorganica e Bioinorganica, Università degli Studi, Via Gino Capponi 7, I-50121, Florence, Italy ^bDipartimento di Scienze Dermatologiche, Università degli Studi, Centro MTS, Via degli Alfani 37, I-50121, Florence, Italy

Received 5 January 2001; revised 10 March 2001; accepted 13 April 2001

Abstract—A series of 9-sulfonylated/sulfenylated-6-mercaptopurines has been prepared by reaction of 6-mercaptopurine with sulfonyl/sulfenyl halides. These compounds constitute a new class of potent antimycobacterial agents, possessing MIC values against *Mycobacterium tuberculosis* H37Rv in the range of 0.39–3.39 μg/mL, as well as appreciable activity against *Mycobacterium avium*. Furthermore, a compound of this small series exhibited good activity (MIC under 1 μg/mL) against several drug resistant strains of *M. tuberculosis*. © 2001 Elsevier Science Ltd. All rights reserved.

Introduction

Mycobacterium tuberculosis infection remains a major global health problem, principally due to the emergence of multidrug resistant bacterial strains, correlated with widespread mycobacterial infections in HIV-positive patients. 1-3 Furthermore, no new antimycobacterial drugs appeared in the last 30 years when the last such compound (rifampin) has been introduced, whereas mycobacteria other than tuberculosis [such as Mycobacterium avium complex (MAC)] frequently produce severe disseminated infections in a growing number of patients.^{4–6} Although *M. tuberculosis* (two of its strains) was the first bacterial species to have the entire genome sequenced, this was of little help in identifying targets for the development of novel antimycobacterial drugs, mainly due to the complexity of this genoma (with at least 100 genes involved, e.g., in the synthesis of mycobacterial cell wall). Progress has been made ultimately in understanding the role of several proteins involved in susceptibility of mycobacteria to drugs or in the emergence of drug resistance, such as KatG, a multifunctional heme enzyme possessing catalase-peroxidase and cytochrome P450-like oxidase activities (which is responsible for activation of the widely used drug isoniazid 1);8 InhA, an enoyl reductase which also seems to be a target for 1 and other antitubercular drugs;9

DegP, 10 a widely conserved heat shock protein possessing both general molecular chaperone and protease activities (this widely spread bacterial protease plays a major role in the degradation of proteins exported beyond the cytoplasm; its main function being most likely the removal of misfolded membrane and periplasmic proteins or not properly processed proteins);¹⁰ or β-ketoacyl synthetase (the enzyme involved in fatty acid synthesis and elongation)¹¹ among others. Considering all these data, many groups have recently reported^{11–18} the synthesis and antimycobacterial activity of novel classes of compounds that hopefully will lead to new therapeutic agents useful in the fight against mycobacterial diseases. Among the new structures recently reported, of particular interest seem to be some 2,6-bis(alkylthio)-4-pyridine carboxamides 2,12 N-alkyl-1,2-dihydro-2-thioxo-3-pyridinecarbothioamides 3,15 6chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and -dithiones 4,18 9-benzyl-purines 5 13 or some sulfonyl-containing fatty acid derivatives (carboxamides and sulfonamides) of types 6.11

Considering structural elements present in some of the antimycobacterial compounds **1–6** mentioned above, and our interest in the design of biologically active compounds incorporating sulfonyl moieties (such as sulfonamide carbonic anhydrase inhibitors, ^{19–21} sulfonylated amino acid hydroxamates as metalloprotease inhibitors, ^{22–25} or sulfonylated derivatives with antifungal^{26–28} and anticancer^{29–31} activity) we report here the serendipitous discovery of strong antimycobacterial

^{*}Corresponding author. Tel.: +39-055-275-7551; fax: +39-055-275-7555; e-mail: claudiu.supuran@unifi.it

activity of 9-sulfonylated-6-mercaptopurines of type 7 as well as some structurally related sulfenyl derivatives 8.

Compounds 7 and 8 were prepared from 6-mercapto purine 9 (with its two tautomeric forms, the thione 9a and the thiol 9b forms, Scheme 1) which was reacted with sulfonyl halides in Schotten–Baumann conditions, or sulfenyl halides, in acetonitrile and in the presence of triethylamine as base acceptor, as reported previously for other heterocyclic derivatives incorporating sulfonyl moieties (Scheme 1 and Table 1). 19–31

The sulfonylation/sulfenylation reaction occurred only at the N-9 atom, without the concurrent N-1,7 or S-sulfonylation, as proved by the spectral data of the new derivatives 7 and 8 (the most important argument in favor of this assumption was the presence of the unchanged thioamide bands at 1045 (thioamide III), 1550 (thioamide I), and 3300 (NH) cm⁻¹, respectively, in the IR spectra of 9 and its derivatives 7 and 8; in fact, it is well established that the thione form 9a is the predominant one in this and related heterocycles containing SH moieties in their molecules). For the 3-amino- and 4-aminophenylsulfonyl derivatives 7f,g the corresponding acetamido sulfonyl chlorides were used in the synthesis, and the free amino derivatives were obtained by deacetylation in the presence of 10% HCl in ethanol. 22,23 The

Scheme 1.

new compounds 7 and 8 were easily purified by recrystallization from ethanol or ethanol/water 2:1 (v/v).³⁴

The sulfonylated/sulfenylated-6-mercaptopurines reported here were tested for their antimycobacterial activity against *M. tuberculosis* strain H37Rv and *M. avium* by the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), Southern Research Institute, Frederick, MD, USA (Table 1).

As seen from data of Table 1, all the sulfonylated/sulfenylated-6-mercaptopurines 7 and 8 possess very good antimycobacterial activity, with MIC values against M. tuberculosis strain H37Rv in the range of 0.39–3.39 µg/ mL, although the parent compound 9 is devoid of such an activity (data not shown). It must be noted that compounds possessing an MIC $< 1~\mu g/mL$ are considered as excellent leads (TAACF communication). Mention must be made at this point that 6-mercaptopurine 9 is a widely used antimetabolite drug, employed in chemotherapy combinations for the treatment of various leukemias and solid tumors, 35 as well as for the management of other conditions such as inflammatory bowel disease (Crohn's disease),³⁶ or as an immunosuppressive drug (the actual drug used is azathioprine, a prodrug of 9). 37 The nature of the R moiety in derivatives 7 and 8, and the oxidation state of the sulfur atom greatly influenced the antimycobacterial activity of the new compounds reported here. Best activity against M. tuberculosis H37Rv was observed for the sulfamide derivative 7a, which is only slightly less potent than the standard drug rifampin (MIC of 0.125 µg/mL in the same conditions of the assay), followed by the acetamido-substituted derivative 7i, the amino- and bromosubstituted sulfonamides 7e and 7f, as well as the sulfenylated derivatives 8a,b (which all possess MIC values under 1 µg/mL). Slightly less active against M. tuberculosis H37Rv were the 4-methyl- and 2-nitro-substituted sulfonamides 7b and 7h, followed by the 4-chloro- and 3-amino-substituted derivatives 7d and 7g, which in turn were more active than the fluoro-substituted derivative 7c (the least active in this small series, with an MIC of 3.39 µg/mL). For the 2-nitrophenyl-substituted derivatives 7h and 8a, best activity is observed for the sulfenamide derivative (twice as active as the corresponding sulfonamide derivative), whereas in the series of halogeno-substituted compounds, best activity was correlated with an increased atomic weight of the halogen atom, with the bromo-derivative 7e more active than the chloro- and fluoro-substituted congeners 7c and 7d.

The biological activity is slightly different against M. avium (Table 1). Again, all compounds 7 and 8 possess important inhibitory properties at 12.5 μ M concentrations in the assay system (this is the primary assay performed for all compounds). Against this pathogen, best activity was observed for the bromo-sulfonamide 7e and the 4-nitrophenylsulfenyl-derivative 8b, followed by the other sulfenyl derivative 8a, the 4-methyl-, 4-fluoro-, 3-amino-, 4-amino-, 4-acetamido and 4-chlorosubstituted derivatives of type 7 (with % inhibition in the range of 57–81%). Less active were the 2-nitro-substituted sulfonamide 7h (inhibition of 50%), and the

sulfamide 7a (inhibition of 40%), which was in fact the most active compound against *M. tuberculosis*.

The cytotoxicity against VERO cells (IC₅₀) as well as the selectivity index (SI, defined as the IC₅₀/MIC ratio) for compounds **7** and **8** were also determined, ³² as these parameters are of great importance for the pharmacology of a potential antimycobacterial agent (Table 1). One must mention that compounds with an SI over 10 (but occasionally lower) are of interest for a potential development as antimycobacterial agents. Among the compounds reported here, six derivatives possess an SI value \geq 40, with derivative **7a** having the highest such value, of > 513, really comparable with that of the clinically used drug rifampin (SI > 8000) (Table 1).

Some of the new derivatives 7 and 8 were also tested for their antimycobacterial activity against drug resistant

M. tuberculosis strains (Table 2). Strains resistant to nine of the main antimycobacterial clinically used drugs [isoniazid 1 (INH); rifampin (RMP); pyrazinamide (PZA); ethambutol (EMB); kanamycin (KM); ethionamide (ETA); para-aminosalicylic acid (PAS); thiacetazone (TAC); cycloserine (CS)] were included in the assay. It may be observed from data of Table 2 that compounds 7 and 8 show a higher MIC against these drug resistant strains, as compared to the MIC value against the wild-type (WT) M. tuberculosis strain H37Rv, proving thus the existence of different degrees of cross-resistance between these new antimycobacterial agents and the clinically used drugs mentioned above. Worst cross-resistance was observed against ethionamide resistant strains. Less cross-resistance was seen, on the other hand, for 7a against PZA-, EMB-, PAS-, TACand CS-resistant strains, but the most interesting observation regards compound 8b, which exhibited the same activity against WT and RMP-, EMB- and KM-resistant

Table 1. Compounds 7 and 8 synthesized in the present study and their antimycobacterial activity data against M. tuberculosis H37Rv [minimum inhibitory concentration (MIC), in μ g/mL] and M. avium (% inhibition at 12.5 μ M)

Compd	R		M. avium		
		MIC (μg/mL) ^a	$IC_{50} (\mu g/mL)^b$	SI ^c	% Inhibition (at 12.5 µM) ^d
7a	Me ₂ N	0.39	> 200	> 513	40
7b	$4-Me\tilde{C}_6H_4$	1.60	4	2.5	73
7c	$4-FC_6H_4$	3.39	1	0.30	70
7d	$4-ClC_6H_4$	3.13	1	0.32	60
7e	$4-BrC_6H_4$	0.78	2	2.6	81
7f	$4-H_2NC_6H_4$	0.78	> 100	> 128	63
$7 \mathrm{g}$	3-H2NC6H4	3.13	468	150	68
7h	$2-O_2NC_6H_4$	1.56	64	40	50
7i	4-AcNHC ₆ H ₄	0.78	> 200	> 256	57
8a	$2-O_2NC_6H_4$	0.78	5	6.4	75
8b	$4-O_2NC_6H_4$	0.78e	45	58	79
_	Rifampicin	0.125	> 1000	> 8000	_

^aMIC against *M. tuberculosis* H37Rv was in BACTEC 12B medium using the Microplate Alamar Blue Assay (MABA). Compounds exhibiting fluorescence (activity) were then tested in the BACTEC 460-radiometric system.³² MIC was defined as the lowest concentration effecting a 90% reduction of fluorescence relative to controls.

Table 2. Antimycobacterial activity data of some compounds 7 and 8 against M. tuberculosis drug resistant strains [minimum inhibitory concentration (MIC), in $\mu g/mL$]

Compd	R	M. tuberculosis resistant strain MIC (μg/mL) ^a									
		WT	INH	RMP	PZA	EMB	KM	ETA	PAS	TAC	CSb
7a	Me ₂ N	0.39	6.25	6.25	3.13	3.13	6.25	12.5	3.13	3.13	3.13
7d	$4-C1\tilde{C_6}H_4$	3.13	12.5	12.5	12.5	6.25	12.5	25	6.25	6.25	6.25
7g	$3-H_2NC_6H_4$	3.13	12.5	12.5	12.5	12.5	12.5	50	12.5	12.5	12.5
7i	4-AcNHC ₆ H ₄	0.78	12.5	12.5	6.25	6.25	12.5	25	6.25	6.25	6.25
8b	$4-O_2NC_6H_4$	0.78^{e}	6.25	0.78		0.78	1.56	_	_		_
_	Rifampicin	0.125	0.125	>8	0.125	0.125	0.125	0.125	0.125	0.125	0.125

^aMIC against *M. tuberculosis* wild type (WT, H37Rv) and drug-resistant strains were determined in BACTEC 12B medium using the Microplate Alamar Blue Assay (MABA). Compounds exhibiting fluorescence (activity) were then tested in the BACTEC 460-radiometric system.³² MIC was defined as the lowest concentration effecting a 90% reduction of fluorescence relative to controls.

 $^{^{}b}IC_{50}$ represents the cytotoxicity determined in VERO cells at concentrations less than or equal to 62.5 μ g/mL or 10 times the MIC against *M. tuberculosis* H37Rv. After 72 h exposure to drug viability was assessed on the basis of cellular conversion of MTT into formazan, using the Promega Cell Titer 96 non-radioactive cell proliferation assay.³²

^cSelectivity index, $SI = IC_{50}/MIC$.

^dThe compounds were tested against *M. avium* in BACTEC 12B medium using the Microplate Alamar Blue Assay (MABA). Compounds exhibiting fluorescence (activity) were then tested in the BACTEC 460-radiometric system.³²

eMIC against M. tuberculosis Erdman was 0.78 μg/mL.

^bThe tested *M. tuberculosis* strains were resistant to: INH, isoniazid 1; RMP, rifampin; PZA, pyrazinamide; EMB, ethambutol; KM, kanamycin; ETA, ethionamide; PAS, *para-*aminosalicilyc acid; TAC, thiacetazone; CS, cycloserine.

strains, being only slightly less effective against the isoniazid-resistant mycobacteria.

In conclusion, we report here a small series of 9-sulfenylated/sulfonylated-6-mercaptopurines that show very interesting antimycobacterial activity against *M. tuberculosis* strain H37Rv as well as *M. avium*. Furthermore, one of these new derivatives is also active against several drug-resistant strains of *M. tuberculosis*. These compounds thus constitute interesting leads for obtaining more efficient antimycobacterial agents. Work is in progress in our laboratory for the synthesis of a larger number of congeners in these series of derivatives, as well as for testing their antimycobacterial activity in vitro and in vivo.

Acknowledgements

Antimycobacterial data presented here were provided by the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), Southern Research Institute, Frederick, MD, USA, through a research and development contract of our university with the US National Institute of Allergy and Infectious Diseases. Thanks are addressed to Dr. Joseph A. Maddry (TAACF) for his help. This research was financed in part by a grant from the Italian CNR—Target Project Biotechnology.

References and Notes

- 1. Hamilton, C. D. Curr. Infect. Dis. Rep. 1999, 1, 80.
- 2. Migliori, G. B.; Ambrosetti, M.; Fattorini, L.; Penati, V.; Vaccarino, P.; Besozzi, G.; Ortona, L.; Saltini, C.; Orefici, G.; Moro, M. L.; Lona, E.; Cassone, A. *Int. J. Tuberc. Lung Dis.* **2000**, *4*, 940.
- 3. Fitzgerald, D. W.; Morse, M. M.; Pape, J. W.; Johnson, W. D., Jr. Clin. Infect. Dis. 2000, 31, 1495.
- 4. Manabe, Y. C.; Bishai, W. R. Nat. Med. 2000, 6, 1327.
- 5. Coninx, R.; Mathieu, C.; Debacker, M.; Mirzoev, F.; Ismaelov, A.; de Haller, R.; Meddings, D. R. *Lancet* **1999**, *353*, 969.
- Moore, R. D.; Chaisson, R. E. Am. J. Med. 1997, 102, 50.
 De Smet, K. A. L. Trends Microbiol. 1997, 5, 429.
- 8. Wengenack, N. L.; Lopes, H.; Kennedy, M. J.; Tavares, P.; Pereira, A. S.; Moura, I.; Moura, J. J. G.; Rusnak, F. *Biochemistry* **2000**, *39*, 11508.
- 9. Parikh, S. L.; Xiao, G.; Tonge, P. J. Biochemistry 2000, 39, 7645.
- 10. Supuran, C. T.; Scozzafava, A.; Mastrolorenzo, A. Expert Opin. Ther. Pat. 2001, 11, 221.
- 11. Jones, P. B.; Parrish, N. M.; Houston, T. A.; Stapon, A.; Bansal, N. P.; Dick, J. D.; Townsend, C. A. *J. Med. Chem.* **2000**, *43*, 3304.
- 12. Miletin, M.; Hartl, J.; Odlerova, Z.; Machacek, M. *Pharmazie* **1997**, *52*, 558.
- 13. Bakkestuen, A. K.; Gundersen, L. L.; Langli, G.; Liu, F.; Nolsoe, J. M. J. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1207.
- 14. Ragno, R.; Marshall, G. R.; Di Santo, R.; Costi, R.; Massa, S.; Pompei, R.; Artico, M. *Bioorg. Med. Chem.* **2000**, *8*, 1423.

- 15. Pagani, G.; Pregnolato, M.; Ubiali, D.; Terreni, M.; Piersimoni, C.; Scaglione, F.; Fraschini, F.; Rodriguez Gascon, A.; Pedraz Munoz, J. L. *J. Med. Chem.* **2000**, *43*, 199.
- 16. Wachter, G. A.; Davis, M. C.; Martin, A. R.; Franzblau, S. G. J. Med. Chem. 1998, 41, 2346.
- 17. Artico, M.; Mai, A.; Sardella, G.; Massa, S.; Lampis, G.; Deidda, D.; Pompei, R. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1493.
- 18. Waisser, K.; Gregor, J.; Kubicova, L.; Klimesova, V.; Kunes, J.; Machacek, M.; Kaustova, J. Eur. J. Med. Chem. **2000**, *35*, 733.
- 19. Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C. T. *J. Med. Chem.* **2000**, *43*, 4542
- 20. Casini, A.; Scozzafava, A.; Mincione, F.; Menabuoni, L.; Ilies, M. A.; Supuran, C. T. *J. Med. Chem.* **2000**, *43*, 4884.
- 21. Borras, J.; Scozzafava, A.; Menabuoni, L.; Mincione, F.; Briganti, F.; Mincione, G.; Supuran, C. T. *Bioorg. Med. Chem.* **1999**, *7*, 2397.
- 22. Scozzafava, A.; Supuran, C. T. *Bioorg. Med. Chem.* **2000**, *8*, 637.
- 23. Scozzafava, A.; Supuran, C. T. *Bioorg. Med. Chem. Lett.* **2000**. *10*. 499.
- 24. Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2000, 43, 1858.
- 25. Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2000, 43, 3677.
- 26. Briganti, F.; Scozzafava, A.; Supuran, C. T. Eur. J. Med. Chem. 1997, 32, 901.
- 27. Mastrolorenzo, A.; Scozzafava, A.; Supuran, C. T. Eur. J. Pharm. Sci. 2000, 11, 99.
- 28. Mastrolorenzo, A.; Scozzafava, A.; Supuran, C. T. J. Enzyme Inhib. 2000, 15, 557.
- 29. Supuran, C. T.; Scozzafava, A. Eur. J. Med. Chem. 2000, 35, 867.
- 30. Mastrolorenzo, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2000, 10, 1887.
- 31. Mastrolorenzo, A.; Scozzafava, A.; Supuran, C. T. *Eur. J. Pharm. Sci.* **2000**, *11*, 325.
- 32. Collins, L.; Franzblau, S. G. Antimicrob. Agents Chemother. 1997, 41, 1004.
- 33. Kornis, G. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Ed.; Pergamon: Oxford, UK, 1984; Vol. VI, pp 545–562.
- 34. For example: An amount of 150 mg (1 mmol) of 6-mercaptopurine 9 was suspended in 10 mL acetone and 120 mg of KOH (2 mmol) dissolved in 5 mL of water were added. The obtained solution was treated dropwise with 144 mg (1 mmol) of N,N-dimethylaminosulfamoyl chloride, maintaining the temperature at 4°C, under powerful magnetic stirring. After 2 h (TLC control), the pH was brought to 7 with 5% aqueous HCl, the acetone was evaporated in vacuo and the precipitated sulfonamide filtered and recrystallized from ethanol. Pale yellow needles, mp 246-247 °C (dec.). IR (KBr), cm⁻¹: 1045 (thioamide III), 1155 (SO₂^{sym}), 1340 (SO₂^{as}), 1550 (thioamide I), and 3300 (NH); ¹H NMR (DMSO-d₆-D₂O), 300 MHz, δ ppm: 4.53 (s, 6H, Me₂N); 8.45 (s, 1H, CH); 8.63 (s, 1H, CH); ¹³C NMR (DMSO- d_6 –D₂O), δ ppm: 53.5; 115.9; 145.2; 145.8; 150.7; 158.3. Anal. Found: C, 32.56; H, 3.69; N, 26.72; S, 24.54%. C₇H₉N₅O₂S₂ requires: C, 32.42; H, 3.50; N, 27.01; S, 24.73%.
- 35. (a) Elion, G. B. *Science* **1989**, *244*, 41. (b) Peters, G. J.; van der Wilt, C. L.; van Moorsel, C. J.; Kroep, J. R.; Bergman, A. M.; Ackland, S. P. *Pharmacol. Ther.* **2000**, *87*, 227.
- 36. Bowen, D. G.; Selby, W. S. *Dig. Dis. Sci.* **2000**, *45*, 1810. 37. Crawford, D. J. K.; Maddocks, J. L.; Jones, D. N.; Szawlowski, P. *J. Med. Chem.* **1996**, *39*, 2690.